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5 Drinfeld–Jimbo Algebras and their Represen-

tations

In this lecture we introduce the Drinfeld–Jimbo quantised enveloping algebras and

discuss their representation theory. This generalises our presentation of Uq(sl2)

from previous lectures, and closely parallels the classical situation.

5.1 Drinfeld–Jimbo Quantised Enveloping Algebras

In this first section we give the definition of the Drinfeld–Jimbo algebras. We begin

by recalling some relevant classical facts about the semi-simple Lie algebras, and

then move onto the definition itself.

5.1.1 Semi-simple Lie Algebras

Let g be a finite dimensional complex semi-simple Lie algebra, and h ⊆ g a fixed

Cartan subalgebra. As usual, we call the dimension of h the rank of g. Let

R ⊆ h∗ denote the root system associated with (g, h). Choose an ordered basis π =

{α1, . . . , αr} of simple roots for R and let R+ (respectively R−) be the set of positive

(respectively negative) roots with respect to π. Moreover, let g = n+ ⊕ h ⊕ n
−

be

the corresponding triangular decomposition.

Identify h with its dual via the Killing–Cartan form. The induced non-degenerate

symmetric bilinear form on h∗ is denoted by (·, ·). The root lattice Q := ZR is

contained in the weight lattice

P := {λ ∈ h∗ | (λ, αi)/di ∈ Z, for all αi ∈ π}.

where di := (αi, αi)/2. The fundamental weights ωi ∈ h∗, for i = 1, . . . , r are

characterized by (ωi, αj)/dj = δij . Let us denote

P+ := span
Z
{ωi | i = 1, · · · , r},
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and call this the set of integral dominant weights. Recall that (aij) := 2(αi, αj)/(αi, αi)

is the Cartan matrix of g with respect to π.

For µ ∈ P+, let V (µ) denote the uniquely determined finite-dimensional irreducible

left g-module with highest weight µ. More explicitly, there exists a nontrivial vector

vµ ∈ V (µ) satisfying µ = 0, Hvµ = µ(H)vµ, (for all H ∈ h, E ∈ n+), andV(µ) is

generated by this vector.

5.1.2 Drinfeld–Jimbo Algebras

We keep here the notation of the previous section, and introduce one of the central

definitions in the theory of quantum groups:

Definition 5.1. The Drinfeld–Jimbo quantised enveloping algebra of g is the al-

gebra

Uq(g) := C
〈
Ei, Fi, Ki, K

−1
i | i = 1, . . . , l

〉
/Ig,

where l is the rank of g, and Ig is the ideal generated by the elements

KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi,

KiEj = q(αi,αj)EjKi, KiFj = q−(αi,αj)FjKi,

1−aij∑

k=0

(−1)k

(
1 − aij

k

)

qi

E
1−aij

i EjE
k
i = 0,

1−aij∑

k=0

(−1)k

(
1 − aij

k

)

qi

F
1−aij

i FjF
k
i = 0,

EiFj − FjEi = δij

Ki − K−1
i

qi − q−1
i

,

with qi := qdi, and the q-deformed binomials defined as in Lecture 3.

Exercise: It is now natural to ask how this definition relates to the the classical

Serre presentation of U(g) (see [1] for the exact definition of the classical Serre

presentation). The following two exercises show there is a direct generalisation of

situation for the Uq(sl2).
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1cm (i) Obviously, the presentation of Uq(g) we have given above is not well-

defined when q = 1. However, just as for the Uq(sl2) case, there exists a re-

expression Ũq(g) of the algebra which is well-defined for the q = 1 case. This

involves adding l additional generators Gi, and new set of relations replacing the

offending expressions

EiFj − FjEi = δij

Ki − K−1
i

qi − q−1
i

.

Find these relations and explicitly describe the isomorphism.

(ii) In the q = 1 case, the algebra Ũ1(g) has generators Ei, Fi, Gi, and Ki. Show

that quotienting Ũ1(g) by the ideal generated by the elements Ki = 1, for i =

1, . . . , l, gives back the classical Serre presentation of U(g), and hence that Ũ1(g)

is an l-fold cover of U(g).

Now just as in the classical case, there exists a canonical vector space basis of

Uq(g), as the following proposition demonstrates:

Proposition 5.2 The following two sets are vector space bases for Uq(g):

{F r1

1 · · ·F rl

l Ks1

1 · · ·Ksl

l Et1
1 · · ·Etl

l | ri, ti ∈ N0, si ∈ Z},

and

{Er1

1 · · ·Erl

l Ks1

1 · · ·Ksl

l F t1
1 · · ·F tl

l | ri, ti ∈ N0, si ∈ Z}.

We call them the PBW bases.

Clearly, this generalises the PBW-bases introduced for Uq(sl2) in Lecture 2. More-

over, it is clear that this result shows that the classical triangular decomposition

of the universal enveloping algebra of a semi-simple Lie algebra generalises to the

quantum setting in the form

Uq(g) = Uq(n+) ⊗ Uq(h) ⊗ Uq(n−).

The definition of g is quite uninteresting from a deformation theory point of view.

However, it is very interesting from a Hopf algebraic point from view:

3



Proposition 5.3 For any compact semi-simple Lie algebra g, a Hopf algebra struc-

ture on Uq(g) is determined by

∆(Ki) = Ki ⊗ Ki, ∆(Ei) = Ei ⊗ Ki + 1 ⊗ Ei, ∆(Fi)Fi = Fi ⊗ 1 + K−1
i ⊗ Fi,

ε(Ki) = 1, ε(Ei) = 0, ε(Fi) = 0,

S(Ki) = K−1
i , S(Ei) = −EiK

−1
i , S(Fi) = −KiFi.

The proof of this proposition is just a careful generalisation of the proof for the

special case of Uq(sl2), and we leave it as an instructive exercise.

Exercise: Find an explicit description of the induced Hopf algebra structure on

Ũq(g). Show that in the q = 1 case, this structure descends to a well-defined

Hopf algebra on Ũ1(g)/ 〈Ki − 1〉, and that it is isomorphic to the canonical Hopf

algebra structure on U(g) discussed in Lecture 1.

5.2 Finite Dimensional Representations of Drinfeld–Jimbo

Algebras

Now that we have given the definition of the Drinfeld–Jimbo algebras, we can

move on to discussing their representations. While the theory closely parallels the

classical case, there is an important difference: The fact that Uq(g) is an l-fold

cover of U(g) when q = 1 gives rise to 2l different representation types. As we shall

see, it is the so-called type 1 representations that will be of most interest to us.

5.2.1 Type 1 Representations

Let T be a representation of a Drinfeld–Jimbo algebra Uq(g) on a vector space V .

For a (not necessarily linear) functional Λ on the root lattice Q, we set

VΛ = {x ∈ V | T (Kα)x = Λ(α)x, for all α ∈ Q},

where Kα = Kr1

1 · · ·Krl

l , and α = r1α1 + · · · + rlαl. That is, each VΛ is a joint

eigenspace of the commuting operators T (Ki), for i = 1, 2, . . . , l.

If VΛ 6= {0}, then we say that Λ is a weight, we call the number

mΛ := dimVΛ the multiplicity of Λ, and we say that VΛ is a weight subspace of
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the representation T . The non-zero vectors in VΛ are called weight vectors. A rep-

resentation is called a weight representation if its underlying space V decomposes

into a direct sum of weight vectors. As we will see below, the weights of most

interest to us are all of the form (z1, . . . , zl), for zi ∈ C, where

(z1, . . . , zl)(

l∑

i=1

niαi) = (z1)
n1 · · · (zl)

nl.

A weight representation T of Uq(g) on a vector space V is called a representation

with highest weight if there exists a weight vector eΛ ∈ VΛ such that

T (Uq(g))eΛ = VΛ; and T (Ei)eΛ = 0, (for all i = 1, 2, · · · , l).

We then call the function Λ a highest weight, and the vector eΛ a highest weight

vector of the representation T .

We say that the a highest weight representation of Uq(g) is a representation of type

1 if it is of the form

Λ := (qn1, . . . , qnl), (ni ∈ N0).

Clearly, if λ =
∑l

i=1 niαi is some element of P+, and (·, ·) is the bilinear product

on g∗ induced by the Cartan–Killing form of g, then

Λ(α) = q(α,λ), (α ∈ Q),

in analogy with the classical situation.

5.2.2 Verma Modules and Type 1 Representations

We will recall that for a classical enveloping algebra U(g), the Borel subalgebra of

U(g) is defined to be

U(b) := C 〈Hi, Fi | i = 1, . . . , l〉 .

Moreover, for any λ ∈ h∗, and Cλ the corresponding one-dimensional h-module,

the associated Verma module is defined as

M(λ) := U(g) ⊗U(b) Cλ.
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As one might guess, these definitions carry over directly to the quantum setting.

Explicitly, the Borel subalgebra of a Drinfeld–Jimbo algebra Uq(g) is defined to be

U(b) := C
〈
Ki, K

−1
i , Fi | i = 1, . . . , l

〉
.

Moreover, the quantum Verma module associated to λ ∈ P+, is given by

M(λ) := Uq(g) ⊗Uq(b) Cλ.

Generalising the well-known classical result about Verma sub-modules, we have

the following:

Lemma 5.4 For any quantum Verma module M(λ), there exists a maximal irre-

ducible submodule M , and hence a Uq(g)-representation

L(λ) := M(λ)/M

Just as in the classical case, these representations are of central importance, as the

following result demonstrates:

Proposition 5.5 It holds that

1. Lλ is an irreducible representation;

2. For any λ ∈ h∗, there exists, up to equivalence, a unique irreducible type

1 representation of Uq(g) with highest weight λ. All type 1 representations

arise in this way;

3. If λ ∈ P+, then the representation Lλ is finite dimensional.

5.2.3 Classifying Representations

Just as for the Uq(sl2) case, it turns out that all the representations of Uq(g) are

of highest-weight type:

Theorem 5.6 Any irreducible finite-dimensional representation of a Drinfeld–

Jimbo algebra Uq(g) is a weight representation with highest-weight. Such a weight

representation is uniquely determined, up to equivalence, by its highest weight.
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We would like to find a more concrete version of this description and relate it to

our results on type 1 representations. To do this we must first look at the one-

dimensional representations of Uq(g). As a little thought will confirm, these are

classified by l-tuples ω = (ω1, . . . , ωl), where each ωi ∈ {1,−1}, and the corre-

sponding representation Tω acts on Ce according to

Tω(Ei) = T (Fi) = 0, T (Ki)e = ωe.

With this fact in hand we are ready to give our next result:

Proposition 5.7 If T is a finite dimensional irreducible highest weight represen-

tation of Uq(g), and Tω is a one-dimensional representation of Uq(g), then the

tensor product

T ⊗ Tω is a finite dimensional irreducible highest weight representation of Uq(g).

Moreover, every finite dimensional irreducible highest weight representation of

Uq(g) is of this form.

We call a representations of the form T ⊗ Tω a representations of type ω. Clearly,

a type 1 representation is the same thing as a representation of type (1, . . . , 1).

Finally, we come to the quantum analogue of the classical Weyl theorem, which

states that all finite dimensional representations of a compact semi-simple Lie

algebra are completely reducible:

Theorem 5.8 Every finite dimensional representation of Uq(g) is completely re-

ducible.
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